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Forced Vibration Analysis of Breathing Cracked 
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Abstract— Cantilever beam with breathing crack is selected and forced vibration analysis is performed in MATLAB. The cantilever beam is 
converted into the equivalent single degree of freedom system. The simple single-degree-of-freedom system with time varying stiffness is 
employed to simulate the dynamic behavior of the beam. The equation of motion of breathing cracked cantilever beam with time varying 
stiffness is developed and solved using MATLAB. The frequency, amplitude and acceleration of cracked and uncracked beam response is 
determined. Analysis is carried out in both time and frequency domains, which is aimed to identify the dynamic response associated with 
the existence of breathing crack.  

Index Terms— Cantilever Beam, Breathing crack, Forced vibration, MAT LAB, Time domain, Frequency domain, Stiffness.   

——————————      —————————— 

1 INTRODUCTION                                                                     
urface cracks occur frequently in the structures of engi-
neering applications. The effect of these cracks on the per-
formance of the structure is more severe. Identification of 

crack depths and location of reference point are the standard 
methods in performance monitoring of the structures. Cur-
rently available non-destructive testing (NDT) methods, such 
as acoustic, ultrasonic and magnetic field methods are time 
consuming. Vibration analysis based technique has been 
proved fast and inexpensive for crack identification. The vi-
bration analysis of a physical system consists of four major 
steps, namely mathematical modeling of a physical system, 
formulation of the governing equations, mathematical solution 
of the governing equation, and physical interpretation of the 
results. E. Douka et al [1&2] has investigated the dynamic be-
havior of a cantilever beam with a breathing crack both theo-
retically and experimentally. S.M.Cheng et al [3] proposed that 
the natural frequency reduction for a breathing crack is much 
smaller than for an open crack. Jyoti K. Sinha et al [4] has stud-
ied the experimental vibration behavior of a free–free beam 
with a breathing crack is simulated for a sinusoidal input force 
using a simple FE model for a crack in the beam. The fatigue 
crack was introduced in the form of breathing crack and the 
model which opens when the normal strain near the crack tip 
is positive, otherwise it closes [5]. The nonlinear behavior was 
found on time history and frequency spectrum for each vibra-
tion mode[6]. The changes in the dynamic behavior of cracked 
structures can be used to deduce the size and location of the 
crack [6-8]. O. N. L. Abraham et al [9] was investigated a 
method which utilizes substructure normal modes to predict 
the vibration properties of a cantilever beam with a breathing 
transverse crack. Crack identification in structures has been 
the subject of intensive investigations since the last five deca- 

 

 
des. Many studies have been carried out in an attempt to find 
methods for non-destructive crack detection in structural 
members. However, a consistent cracked beam vibration theo-
ry is yet to be developed. There are still many unanswered 
questions, especially in the area of closing cracks in beams.  

 
2   MODELLING OF BREATHING CRACK  

In this paper, a simple breathing crack model is de-
veloped for the cracked cantilever beam. To make an analysis 
of the dynamic behavior of a cracked beam vibrating at its first 
mode is analyzed. In the analysis, a cantilever beam with a 
breathing crack is considered as shown in Fig. 1(a). The canti-
lever beam is converted into the equivalent single degree of 
freedom (SDOF) model as shown in Fig. 1(b).  The beam is 
excited by a sinusoidal force causing the crack to open and 
close. Based on the assumption that the beam vibrates at its 
fundamental mode, the time-varying stiffness of the beam can 
be modeled using a simple periodic function of time. 
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Fig. 1(a). Geometry of the cracked cantilever beam 
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The load-displacement response of a breathing crack 

can be represented by the curve shown in Fig: 2. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The points P1, P2 and P3 are shows that crack is fully open, 

partially open and fully closed respectively. As the stiffness 
‘K’ of the structure is a measured of the resistance of load of an 
elastic body to deformation. For an elastic body with by an 
elastic body with a single degree of freedom system (SDOF) 
the stiffness are given as, K=F/δ  

Where F is the force applied on the body and δ  is the dis-
placement. Here, time (t) is chosen as the independent variable 
because the state of crack opening depends on the level of 
load, which varies with time due to vibration. 

      The dynamic response of a breathing crack at its first 
mode in a single-degree-of-freedom system, the stiffness may 
be expressed as 

210 )cos1()( kktkktk c +=++= ∆ ω  
Where ω is the crack breathing frequency, it is equal to the 

excitation frequency. 
01 kk =  is the stiffness of the structure when the crack is fully 

open. And the amplitude of the stiffness change is given by 
)(21 0kkk cc −=∆  

Where ck  is the stiffness when the crack is closed, hence 
the stiffness change is  )cos1(2 tkk c ω+= ∆  

The above stiffness model assumes that the crack is com-
pletely closed when ωt = 2nπ,  Where n = 1, 2, 3…n is any in-
teger. Then cktk =)(                                                                
When Π−= )12( ntω , Where n = 1, 2, 3…n is any integer. 

Then 0)( ktk =  
The crack is in the fully open state. Otherwise the crack is in 

a state of partial closure. 
The present model simulates the change of the structural 

stiffness as a continuous function of time, i.e., when the crack 
opens and closes at a rate of ω. The coefficients k0 and kc are 
determined from the stiffness properties of the structure when 
the crack is completely open and completely closed respective-
ly. 

When the crack is completely closed, the structure acts as 
one without a crack, and the stiffness kc is determined using 
structural mechanics methods. When the crack is completely 
open, the stiffness k0 can be determined using fracture me-
chanics. 

Incorporating the breathing crack model into a single-
degree-of-freedom system, the governing equation for forced 
vibration can be expressed as [1] 

 
tFutkkucum c ωω sin)]cos1([ 0

...
=++++ ∆  

The generalized stiffness kc of the un-cracked beam is given 
by: 
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Where Δc is the change in the flexibility due to the presence 

of a crack. 
The change in the flexibility of a cracked beam can be de-

rived from the equation developed by Dimarogonas and Pai-
petis as [1] 
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    Hence, the total flexibility of the beam containing an 
open crack is given by 

nocrackccc +∆=0                           
Where C no crack is the beam's flexibility without a crack. 

The differential equation of motion is solved using MATLAB. 
The whole analysis is carried out in both time and frequency 
domains. 
 
3  NUMERICAL ANALYSIS 

Numerical simulations were performed considering a 
Plexiglas beam of: Total length L= 230 mm and Rectangular 
cross section bXd= 20X20 mm2. A crack of varying depth is 
introduced at lc= 0.9L mm from the free end.  
For the beam material: 
Young’s modulus    E =2.5X103 N/mm2,  
Density of               ρ = 1200X 10-9 kg/mm2,  
Poisson ratio of        ϑ= 0.31, and  
Damping factor c=0.15 is used.  
A harmonic force of amplitude F=10N is assumed in all cases. 
A generalized mass of the beam is m=0.228 m’L. 

The forcing frequency “ω” is assumed to be equal to 

 
Fig. 1(b). Equivalent SDOF model 

 

 

 
Fig. 2. Schematic load-displacement curve 
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half of the first radian frequency f of the undamaged beam. In 
the previous studies it has been shown when the excitation 
frequency is approximately half the natural frequency of the 
beam, the non-linear behavior of a beam with a breathing 
crack is most clear. For the beam considered, the first natural 
frequency is f1=91 HZ and ω1=2πf1 = 571.7698 rad/Sec   
Therefore forcing frequency    

2
1ωω =  

The equation of motion is integrated and the dynamic re-
sponse of the beam is obtain the initial conditions were initial 
velocity u’(0)=0 mm/s and u(0)=0.05 mm, the whole analysis 
is implemented using MATLAB. 
 
 3.1 Time Domain Analysis of Uncracked Cantilever 

Beam 
 The time domain is a record of the response of a dy-
namic system, as indicated by some measured parameter, as a 
function of time. The time histories of the calculated accelera-
tion are presented in Fig.3. The figure shows pure sinusoidal 
waveform corresponds to the response of the uncracked beam. 
 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3.2 Time Domain Analysis of Cracked Cantilever Beam 
 Fig 4 to 7 shows the time domain plot of 10%, 20%, 
30% and 40% crack depth ratios and crack position at 207 mm 
from fixed end. Crack depth ratio is a ratio of crack depth to 
depth of the beam. The acceleration (g) values are increasing 
when crack depth increases. The stiffness of cracked beam are 
decreasing with cracked depth increases. The crack depth is 
increased harmonic distortion in sinusoidal wave has also in-
creased. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 3. Vertical Displacement of the Uncracked Cantile-
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Fig. 4. 10% Crack depth ratio 

 

 

 
Fig. 5. 20% Crack depth ratio 

 

 
Fig. 6. 30% Cracked depth ratio 

 

 
Fig. 7. 40% Cracked depth ratio 
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3.3 Frequency Domain of Uncracked Cantilever Beam 
The frequency domain is analysis of mathematical func-

tion or signals with respect to frequency rather than time. It 
shows the magnitude of discrete Fourier transform of the 
uncracked beam with one component at the forcing frequency 
fc/2. It presents the spectrum of the measured response of the 
test beam. It can be observed that the beam vibrates predomi-
nantly at its fundamental frequency. The peak in frequency 
domain represents as resonant frequency as shown in Fig.8. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3.4 Frequency Domain of Cracked Cantilever Beam 
 Fig 9 to 12 shows the frequency domain plot of 10%, 
20%, 30% and 40% crack depth ratios and crack position at 207 
mm from fixed end. It exhibits peaks at the forcing frequency 
and its first harmonic indicating the non-linearity induced by 
the presence of the breathing crack. The highest resonant fre-
quency values increased when crack depth increases. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
              
 
 
 
 
 

 
Fig. 8. Vertical Displacement of the Uncracked Cantilever Beam 

Magnitude vs. Frequency 

 

 
Fig. 9. 10% Crack Depth Ratio 

 

 
Fig. 10. 20% Crack depth ratio 

 

 
Fig. 11. 30% Crack Depth Ratio 

 

 
Fig. 12. 40% Crack Depth Ratio 
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4 CONCLUSION 
 The equation of motion of a cracked cantilever beam 
is developed. The equation of motion is integrated by using 
MATLAB with the initial conditions. The results are shown in 
both time domain and frequency domain. The uncracked 
beam shows pure sinusoidal wave in time domain. The 
breathing crack model shows the deviation in a pure sinusoi-
dal wave. The crack depth is increased harmonic distortion in 
sinusoidal wave has also increased. The frequency domain 
shows the frequency, magnitude of the uncracked beam with 
one component that equals to forcing frequency. It can be ob-
served that the beam vibrates predominantly at its fundamen-
tal frequency. The frequency domain shows the frequency, 
magnitude of the cracked beam with two components because 
of non-linearity of the crack. The depth of the crack increases 
the height side bands increases, which show more severe 
damage of the beam. 
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